09/650,752 (Fory74X F Shinga Gamamoto, etal / y

本 PATENT OFFICE JAPANESE GOVERNMENT

E

B

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年12月15日

平成11年特許願第356728号

出 顧 人 Applicant (s):

キヤノン株式会社

2000年 9月22日

•

10

6.4

a 14

€.€)

【書類名】	特許願
【整理番号】	4128052
【提出日】	平成11年12月15日
【あて先】	特許庁長官殿
【国際特許分類】	G03G 15/00
【発明の名称】	異常検知システム及び現像剤残量表示システム
【請求項の数】	6
【発明者】	
【住所又は居所】	東京都大田区下丸子3丁目30番2号 キヤノン株式会
	社内
【氏名】	山本 慎也
【発明者】	
【住所又は居所】	東京都大田区下丸子3丁目30番2号 キヤノン株式会
	社内
【氏名】	掛下留美
【発明者】	
【住所又は居所】	東京都大田区下丸子3丁目30番2号 キヤノン株式会
	社内
【氏名】	緒方 寛明
【発明者】	
【住所又は居所】	東京都大田区下丸子3丁目30番2号 キヤノン株式会
	社内
【氏名】	笹目 裕志
【特許出願人】	
【識別番号】	000001007
【氏名又は名称】	キヤノン株式会社
【代表者】	御手洗 富士夫
【代理人】	
【識別番号】	100075638

【弁理士】 【氏名又は名称】 倉橋 暎 【手数料の表示】 【予納台帳番号】 009128 21,000円 【納付金額】 【提出物件の目録】 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 9703884

【プルーフの要否】 要

4 184

【書類名】 明細書

01

【発明の名称】 異常検知システム及び現像剤残量表示システム

【特許請求の範囲】

【請求項1】 現像剤収納容器と、現像剤収納容器内の現像剤残量を逐次検 知できる現像剤残量検知手段と、確定された現像剤残量を記憶する記憶手段と、 を有するカートリッジが着脱自在であり、前記現像剤残量検知手段の検知出力を 統計的手法により処理して現像剤残量として確定する処理手段と、前記統計的手 法により確定した現像剤残量と前記記憶手段に記憶されている現像剤残量とを比 較する比較手段と、を備えた画像形成装置における画像形成装置及び/又はカー トリッジの異常検知システムであって、

前記比較手段の比較結果が所定量より大きい場合は前記画像形成装置及び/又は カートリッジの異常と判断し、前記装置が備える情報表示部及び/又は前記装置 と通信可能なディスプレイを有する機器に異常を判断した旨を出力することを特 徴とする前記異常検知システム。

【請求項2】 現像剤収納容器と、現像剤収納容器内の現像剤残量を逐次検 知できる現像剤残量検知手段と、確定された現像剤残量を記憶する記憶手段と、 を有するカートリッジが着脱自在であり、前記現像剤残量検知手段の検知出力を 統計的手法により処理して現像剤残量として確定する処理手段と、前記統計的手 法により確定した現像剤残量と前記記憶手段に記憶されている現像剤残量とを比 較する比較手段と、を備えた画像形成装置における画像形成装置及び/又はカー トリッジの異常検知システムであって、

前記処理手段が現像剤残量を確定するまでの期間には、前記現像剤残量検知手 段の検知出力を前記統計的手法とは異なる簡略な統計的手法により処理して現像 剤残量を概算し、概算した現像剤残量と前記記憶手段に記憶されている現像剤残 量とを比較し、

前記処理手段が現像剤残量を確定してからは、確定された現像剤残量と前記記 億手段に記憶されている現像剤残量とを比較し、

前記比較手段の比較結果が所定量より大きい場合は前記画像形成装置及び/又はカートリッジの異常と判断し、前記装置が備える情報表示部及び/又は前記装

出証特2000-3077179

置と通信可能なディスプレイを有する機器に異常を判断した旨を出力することを 特徴とする前記異常検知システム。

【請求項3】 前記画像形成装置はページ記述言語で表された画像情報を展開する展開手段と、展開された画像情報に基づき出力画像を形成する画像形成手段とを有しており、前記比較手段は前記展開手段に備えられることを特徴とする 請求項1又は2の異常検知システム。

【請求項4】 現像剤収納容器と、現像剤収納容器内の現像剤残量を逐次検 知できる現像剤残量検知手段と、確定された現像剤残量を記憶する記憶手段と、 を有するカートリッジが着脱自在であり、前記現像剤残量検知手段の検知出力を 統計的手法により処理して現像剤残量として確定する処理手段と、前記統計的手 法により確定した現像剤残量と前記記憶手段に記憶されている現像剤残量とを比 較する比較手段と、を備えた画像形成装置における現像剤残量表示システムであ って、

前記比較手段の比較結果が所定量よりも小さく、且つ、前記統計的手法により確 定した現像剤残量が記憶手段に記憶されている現像剤残量よりも小さい場合は現 像剤残量を更新し、前記装置が備える情報表示部及び/又は前記装置と通信可能 なディスプレイを有する機器に現像剤残量を表示し、前記記憶手段に記憶された 現像剤残量を更新することを特徴とする現像剤残量表示システム。

【請求項5】 現像剤収納容器と、現像剤収納容器内の現像剤残量を逐次検 知できる現像剤残量検知手段と、確定された現像剤残量を記憶する記憶手段と、 を有するカートリッジが着脱自在であり、前記現像剤残量検知手段の検知出力を 統計的手法により処理して現像剤残量として確定する処理手段と、前記統計的手 法により確定した現像剤残量と前記記憶手段に記憶されている現像剤残量とを比 較する比較手段と、を備えた画像形成装置における現像剤残量表示システムであ って、

前記処理手段が現像剤残量を確定するまでの期間には、前記記憶手段に記憶された現像剤残量を表示し、

前記処理手段が現像剤残量を確定してからは、前記比較手段の比較結果が所定量よりも小さく、且つ、前記統計的手法により確定した現像剤残量が記憶手段に

出証特2000-3077179

記憶されている現像剤残量よりも小さい場合は現像剤残量を更新し、前記装置が 備える情報表示部及び/又は前記装置と通信可能なディスプレイを有する機器に 現像剤残量を表示し、前記記憶手段に記憶された現像剤残量を更新することを特 徴とする現像剤残量表示システム。

【請求項6】 前記画像形成装置はページ記述言語で表された画像情報を展 開する展開手段と、展開された画像情報に基づき出力画像を形成する画像形成手 段とを有しており、前記比較手段は前記展開手段に備えられることを特徴とする 請求項4又は5の現像剤残量表示システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、一般には、電子写真方式により像担持体に静電潜像を形成し、この 静電潜像を現像装置に収容した現像剤にて顕像化する画像形成装置、或はこの画 像形成装置に着脱可能なカートリッジ、即ち、プロセスカートリッジやカートリ ッジ化された現像装置などの異常検知システム及び現像剤残量表示システムに関 するものである。

[0002]

ここで、電子写真画像形成装置としては、例えば、電子写真複写機、電子写真 プリンタ(例えば、LEDプリンタ、レーザービームプリンタ等)、電子写真フ ァクシミリ装置、及び電子写真ワードプロセッサー等が含まれる。

[0003]

又、プロセスカートリッジとは、帯電手段、現像手段及びクリーニング手段の 少なくとも一つと、電子写真感光体とを一体的にカートリッジ化し、このカート リッジを電子写真画像形成装置本体に対して着脱可能とするものであるか、又は 、少なくとも現像手段と電子写真感光体とを一体的にカートリッジ化し、このカ ートリッジを電子写真画像形成装置本体に対して着脱可能とするものをいう。

[0004]

【従来の技術】

従来、電子写真画像形成プロセスを用いた画像形成装置において、電子写真感

光体及び電子写真感光体に作用するプロセス手段を一体的にカートリッジ化して 、このカートリッジを電子写真画像形成装置本体に着脱可能とするプロセスカー トリッジ方式が採用されている。このプロセスカートリッジ方式によれば、装置 のメンテナンスをサービスマンによらずにユーザー自身で行うことができるので 、格段に操作性を向上させることができる。そこでこのプロセスカートリッジ方 式は、電子写真画像形成装置において広く用いられている。

[0005]

このようなプロセスカートリッジ方式の電子写真画像形成装置では、現像剤が 無くなったらカートリッジを交換することで再び画像を形成することができるが 、カートリッジの交換はユーザー自身が行わなければならず、そのために、現像 剤が消費された場合にユーザーに報知する手段、即ち、現像剤量検出装置が必要 となる。

[0006]

現像剤量検出装置は、カートリッジ内の画像形成に供することができる現像剤 がどれくらい残っているかを随時知ることを可能とするために、現像剤残量レベ ルを検知できる現像剤量検知手段をカートリッジ又は画像形成装置本体に設ける ことができる。

[0007]

この現像剤残量検知手段の一方式として、フラットアンテナ方式がある。フラ ットアンテナ(平面アンテナ)は、図3に示すように、基板21に一対の導電パ ターン22、23を所定の間隔で形成したもので、これを、例えば、現像剤収納 容器側面の現像剤と接する位置に配置し、現像剤収納容器内の現像剤が減少する のに従い、現像剤と平面アンテナ20との接触面積が減少するようしたものであ る。

[0008]

現像剤の消費によりこの導電パターン表面と現像剤との接触面積が変化することで静電容量が変化し、これにより、容器内現像剤残量と平面アンテナの静電容量との対応付づけが可能になり、平面アンテナの静電容量を測定することにより 随時容器内現像剤残量を知ることができる。

[0009]

平面アンテナ20の静電容量は、一対の導電部22、23の一方に一定の交流 バイアスを印加し、その際にもう一方の導電部に流れる電流から知ることができ る。

[0010]

上述の方法などを用いた現像剤量検出装置を備えることで、現像剤残量検知が 可能となり、ユーザーに対してカートリッジ内の現像剤量を報知することができ る。

[0011]

【発明が解決しようとする課題】

しかしながら、正確にユーザーに対して現像剤量を報知するためには、上述の ような現像剤残量検知手段などが故障する可能性も考慮することが望まれる。

[0012]

従って本発明の主たる目的は、上記従来技術を更に発展させ、カートリッジ及 び画像形成装置の異常検知を可能とし、異常が発生したカートリッジ及び画像形 成装置が使用されることで更に甚大な破損に到ることを未然に防ぐことのできる 異常検知システムを提供することである。

[0013]

本出顧に係る発明の他の目的は、上記従来技術を更に発展させ、現像剤収納容 器内の現像剤残量レベルを、いつでも、時間をかけずに、正確に使用者に知らせ ることのできる現像剤残量表示システムを提供することである。

[0014]

【課題を解決するための手段】

上記目的は本発明に係る異常検知システム及び現像剤残量表示システムにて達 成される。要約すれば、本発明の第1の態様によると、現像剤収納容器と、現像 剤収納容器内の現像剤残量を逐次検知できる現像剤残量検知手段と、確定された 現像剤残量を記憶する記憶手段と、を有するカートリッジが着脱自在であり、前 記現像剤残量検知手段の検知出力を統計的手法により処理して現像剤残量として 確定する処理手段と、前記統計的手法により確定した現像剤残量と前記記憶手段

に記憶されている現像剤残量とを比較する比較手段と、を備えた画像形成装置に おける画像形成装置及び/又はカートリッジの異常検知システムであって、前記 比較手段の比較結果が所定量より大きい場合は前記画像形成装置及び/又はカー トリッジの異常と判断し、前記装置が備える情報表示部及び/又は前記装置と通 信可能なディスプレイを有する機器に異常を判断した旨を出力することを特徴と する前記異常検知システムが提供される。

[0015]

本発明の第2の態様によると、現像剤収納容器と、現像剤収納容器内の現像剤 残量を逐次検知できる現像剤残量検知手段と、確定された現像剤残量を記憶する 記憶手段と、を有するカートリッジが着脱自在であり、前記現像剤残量検知手段 の検知出力を統計的手法により処理して現像剤残量として確定する処理手段と、 前記統計的手法により確定した現像剤残量と前記記憶手段に記憶されている現像 剤残量とを比較する比較手段と、を備えた画像形成装置における異常検知システ ムであって、前記処理手段が現像剤残量を確定するまでの期間には、前記現像剤 残量検知手段の検知出力を前記統計的手法とは異なる簡略な統計的手法により処 理して現像剤残量を概算し、概算した現像剤残量と前記記憶手段に記憶されてい る現像剤残量とを比較し、前記処理手段が現像剤残量を確定してからは、確定さ れた現像剤残量とを比較し、前記処理手段が現像剤残量を確定してからは、確定さ れた現像剤残量と前記記憶手段に記憶されている現像剤残量とを比較し、前記比 較手段の比較結果が所定量より大きい場合は前記画像形成装置及び/又はカート リッジの異常と判断し、前記装置が備える情報表示部及び/又は前記装置と通信 可能なディスプレイを有する機器に異常を判断した旨を出力することを特徴とす る前記異常検知システムが提供される。

[0016]

本発明の第3の態様によると、現像剤収納容器と、現像剤収納容器内の現像剤 残量を逐次検知できる現像剤残量検知手段と、確定された現像剤残量を記憶する 記憶手段と、を有するカートリッジが着脱自在であり、前記現像剤残量検知手段 の検知出力を統計的手法により処理して現像剤残量として確定する処理手段と、 前記統計的手法により確定した現像剤残量と前記記憶手段に記憶されている現像 剤残量とを比較する比較手段と、を備えた画像形成装置における現像剤残量表示

出証特2000-3077179

システムであって、前記比較手段の比較結果が所定量よりも小さく、且つ、前記 統計的手法により確定した現像剤残量が記憶手段に記憶されている現像剤残量よ りも小さい場合は現像剤残量を更新し、前記装置が備える情報表示部及び/又は 前記装置と通信可能なディスプレイを有する機器に現像剤残量を表示し、前記記 憶手段に記憶された現像剤残量を更新することを特徴とする現像剤残量表示シス テムが提供される。

[0017]

本発明の第4の態様によると、現像剤収納容器と、現像剤収納容器内の現像剤 残量を逐次検知できる現像剤残量検知手段と、確定された現像剤残量を記憶する 記憶手段と、を有するカートリッジが着脱自在であり、前記現像剤残量検知手段 の検知出力を統計的手法により処理して現像剤残量として確定する処理手段と、 前記統計的手法により確定した現像剤残量と前記記憶手段に記憶されている現像 剤残量とを比較する比較手段と、を備えた画像形成装置における現像剤残量表示 システムであって、前記処理手段が現像剤残量を確定するまでの期間には、前記 記憶手段に記憶された現像剤残量を表示し、前記処理手段が現像剤残量を確定し てからは、前記比較手段の比較結果が所定量よりも小さく、且つ、前記統計的手 法により確定した現像剤残量が記憶手段に記憶されている現像剤残量よりも小さ い場合は現像剤残量を更新し、前記装置が備える情報表示部及び/又は前記装置 と通信可能なディスプレイを有する機器に現像剤残量を表示し、前記記憶手段に 記憶された現像剤残量を更新することを特徴とする現像剤残量表示システムが提 供される。

[0018]

上記本発明の一実施態様によると、前記画像形成装置はページ記述言語で表さ れた画像情報を展開する展開手段と、展開された画像情報に基づき出力画像を形 成する画像形成手段とを有しており、前記比較手段は前記展開手段に備えられる

[0019]

【発明の実施の形態】

以下、本発明に係る異常検知システム及び現像剤残量表示システムを図面に則

して更に詳しく説明する。

[0020]

実施例1

先ず、図1~図4を参照して、本発明に従って構成されるプロセスカートリッ ジを装着可能な電子写真画像形成装置の一実施例について説明する。本実施例に て、電子写真画像形成装置は、電子写真式のレーザーピームプリンタAとされる

[0021]

図4に示すように、レーザープリンタAは、パーソナルコンピュータ或はワー クステーション等のホスト41に接続されて使用されるものであり、その構成は 、電子写真画像形成プロセスによって記録材、例えば、記録紙、OHPシート、 布などに画像形成を行うエンジン部Cと、ホスト41と直接接続され、ホスト4 1からのプリント要求信号とともに受け取ったページ記述言語を画像データへと 展開する展開手段であるコントローラ部Dとに大別される。

[0022]

エンジン部Cの動作全般は、エンジン部Cに搭載されたE-コントローラ42 によって制御される。ビデオインターフェース(I/F)43を介して、エンジ ン部Cとコントローラ部Dとは相互に通信可能である。

[0023]

先ず、エンジン部Cにおいて実行される電子写真画像形成プロセスについて説 明する。図1に示すように、レーザビームプリンタAのエンジン部Cは、ドラム 形状の電子写真感光体、即ち、感光体ドラム1を備える。感光体ドラム1は、帯 電手段である帯電ローラ2によって帯電され、次いで、レーザースキャナー3に より、コントローラ部Dにおいて展開された画像データに応じた潜像が形成され る。この潜像は、現像手段5によって現像され、可視像、即ち、トナー像とされ る。

[0024]

つまり現像手段5は、現像剤担持体としての現像ローラ5aを備えた現像室5 Aを有しており、現像室5Aに隣接して形成された現像剤収納部としての現像剤

収納容器4内の現像剤Tを現像剤送り部材10の回転によって、現像室5Aの現 像ローラ5aへと送り出す。本実施例では、現像剤Tとしては、絶縁性1成分ト ナーを用いた。又、現像ローラ5aは、固定磁石5bを内蔵しており、現像ロー ラ5aを回転することによって、現像剤は搬送され、現像ブレード5cにて摩擦 帯電電荷が付与されると共に所定厚の現像剤層とされ、感光体ドラム1の現像領 域へと供給される。この現像領域へと供給された現像剤は、感光体ドラム1上の 潜像へと転移され、トナー像を形成する。現像ローラ5aは、現像バイアス回路 に接続されており、通常、交流電圧に直流電圧が重畳された現像バイアス電圧が 印加される。

[0025]

一方、トナー像の形成と同期して給紙カセット200にセットした記録材Pを ピックアップローラ8、搬送手段9Aを介して転写位置へと搬送する。転写位置 には、転写手段としての転写ローラ6が配置されており、電圧を印加することに よって、感光体ドラム1上のトナー像を記録材Pに転写する。

[0026]

トナー像の転写を受けた記録材Pは、搬送手段9Bで定着手段10へと搬送される。定着手段10は、ヒータ10aを内蔵した定着ローラ10b及び駆動ロー ラ10cを備え、通過する記録材Pに熱及び圧力を印加して転写されたトナー像 を記録材P上に定着する。

[0027]

記録材Pは、搬送手段9Cにより排出トレイ14へと排出される。この排出ト レイ14はレーザービームプリンタAの装置本体の上面に設けられている。

[0028]

転写ローラ6によってトナー像を記録材Pに転写した後の感光体ドラム1は、 クリーニング手段7によって感光体ドラム1上に残留した現像剤を除去した後、 次の画像形成プロセスに供される。クリーニング手段7は、感光体ドラム1に当 接して設けられた弾性クリーニングブレード7aによって感光体ドラム7上の残 留現像剤を掻き落として現像剤溜め7bへと集める。

[0029]

本実施例においては、図2に示すように、プロセスカートリッジBが、電子写 真画像形成装置本体100に対して着脱可能である。即ち、現像剤を収納する現 像剤収納容器(現像剤収納部)4及び現像剤送り部材10を有する現像剤枠体1 1と、現像ローラ5a及び現像ブレード5cなどの現像手段5を保持する現像枠 体12とを溶着して一体として現像ユニットを形成し、更にこの現像ユニットに 、感光体ドラム1、クリーニングブレード7aなどのクリーニング手段7及び帯 電ローラ2を取り付けたクリーニング枠体13を一体に結合することによって、 カートリッジ化されている。

[0030]

このプロセスカートリッジBは、ユーザーによって画像形成装置本体100に 設けたカートリッジ装着手段101(図1)に対して取り外し可能に装着される

[0031]

本発明によれば、プロセスカートリッジBは、現像剤収納容器4内の現像剤T の消費に従ってその残量を逐次検知することのできる、現像剤残量検知手段20 を有している。次に、この現像剤残量検知手段について説明する。

[0032]

現像剤残量検知手段である平面アンテナ20は、現像剤収容容器4の内面側壁 に配設されている。又、本実施例によれば、上述のように現像剤収納容器4内に は、図1の矢印方向に回転する攪拌手段10が設けられており、この攪拌手段1 0が回転することでほぐされつつ現像ローラ5aに供給される。

[0033]

図3に示すように、平面アンテナ20は、一般に用いられているプリント基盤 21上に、エッチングや印刷などで二つの導体パターン22、23を形成したも のである。又、この回路図形を保護するために導体パターン22、23上に保護 膜(図示せず)が形成してある。導体パターンは適当に設定すればよく、本実施 例では、この平面アンテナ20の二つの導体パターン22、23の幅(W)を3 00μm、両導体パターン22、23の間隔(G)を300μm程度まで狭くし てある。

[0034]

本実施例の平面アンテナ20にて、各導電パターンの電極22、23間に交流 バイアスとして200Vpp、2000Hzを印加すると、平面アンテナ20上 に現像剤が触れていないときには20pF、平面アンテナ20上の全面に現像剤 が触れているときには60pFと、異なる静電容量値が観測された。

[0035]

画像形成工程を繰り返すことで現像剤収納容器4内現像剤Tが減少するのに伴い、現像剤Tと平面アンテナ20との接触面積が減少し、それに応じて平面アン テナ20上の電極21、22間における静電容量も減少する。従って、この静電 容量を観測することで、随時容器4内現像剤T量を知ることができる。

[0036]

ところが実際には、現像剤収納容器4内の現像剤Tが徐々に減っても、平面ア ンテナ20上にわずかながら付着して残る現像剤のために、測定結果にばらつき が生じてしまう。

[0037]

そこで、その表面に付着した現像剤を除去するため、撹拌手段10の端部にア ンテナ清掃手段10a(図2)を設けて、攪拌手段10の回転に伴い平面アンテ ナ20表面を清掃している。このアンテナ清掃手段(表面清掃手段)10aは、 例えばPET(ポリエチレンテレフタレート)のシートであり、平面アンテナ2 0の表面をなでるように清掃する。

[0038]

図3に示すように、平面アンテナ20のほぼ中央部に穴24を設け、撹拌手段 10の支持軸がこの穴24を貫通して現像剤収納容器4などに回転自在に支持さ れる構成とすることで、平面アンテナ20のほぼ全域を清掃することができる。

[0039]

上記構成により、平面アンテナ20上にわずかながら付着して残る現像剤によ る測定結果のばらつきはほぼ解消できるが、平面アンテナ20の出力が表面清掃 手段10aの回転周期で変動してしまう。

[0040]

そこで、本実施例では、表面清掃手段10 a の回転周期に応じてアンテナ出力 の平均値をとったり、最小値を選んだりするなどの統計的処理がなされる。

[0041]

しかしながら、現像剤残量レベルを確定させるためには、平面アンテナ20へ バイアスを印加し、更には攪拌手段10及び表面清掃手段10a(攪拌手段10)の回転などを行い、表面清掃手段10aの回転周期に応じたアンテナ出力の統 計処理を実行する必要があるため、その分の時間が必要となる。

[0042]

更に説明すると、プロセスカートリッジBに配設された現像剤残量検知手段2 0からの出力信号は、エンジン部Cに配設された信号処理手段44により統計処 理がなされる。更に、予め対応付けられた平面アンテナ20を用いて検知される 静電容量と現像剤量の関係を用いて、現像剤収納容器4内の現像剤残量レベルと して確定される。

[0043]

本実施例では、現像剤残量レベルは、未使用の状態における現像剤残量を10 0%とし、現像剤が画像形成に全て消費された状態における現像剤残量を0%と したパーセントで示される。

[0044]

又、本発明によればプロセスカートリッジBに記憶手段31を配設し、この記 憶手段31に、確定した現像剤残量レベルを随時書き込み、記憶させる。

[0045]

このように、プロセスカートリッジBに記憶手段31を配設することで、カー トリッジBを交換使用した場合においても、各々のカートリッジにおける現像剤 残量レベルを保存することができる。

[0046]

本実施例では、プロセスカートリッジBに搭載する記憶手段31は、シリアル データ入出力型の不揮発性メモリであり、その記憶容量は16bitである。こ の容量で十分、0~100までの整数を表すことができる。よって、現像剤収納 容器4内の現像剤残量レベルをパーセントで記憶させることが可能である。

12

出証特2000-3077179

[0047]

本実施例において用いた不揮発性メモリの他、記憶手段31としては電源を備 えた揮発性メモリ等も使用可能であり、更には画像形成装置本体100と記憶手 段31とを機械的に接続することなく通信することが可能な非接触メモリを使用 することも可能である。

[0048]

又、記憶手段31に対するデータの書き込み、読み出し手段32は、エンジン 部Cに配設されている。

[0049]

記憶手段31へのデータの書き込み及び読みこみの際には、使用するデバイス の特性により、適当な待ち時間が設定されており、その動作は保証されている。

[0050]

次ぎに、本実施例における現像剤残量検知システム、並びにカートリッジ及び 画像形成装置の異常検知システムについて説明する。

[0051]

先ず、現像剤の残量検知方法について説明する。本実施例では、画像形成装置 本体100が稼動している間は、常時現像剤残量レベルを装置本体100の表示 部であるディスプレイ33(図4)或はパーソナルコンピュータやワークステー ションなどとされるホスト41に設けられた情報表示部であるディスプレイ41 a(図4)に表示することが可能であり、且つ異常が発生した場合にはその旨を 瞬時に装置本体100のディスプレイ33或はホスト41のディスプレイ41a に表示することが可能とされる。勿論、装置本体100のディスプレイ33及び ホスト41のディスプレイ41aの両方に表示させることも可能である。

[0052]

現像剤残量レベル及び異常が発生した旨を、画像形成装置本体の表示部33或 は画像形成装置と通信可能なディスプレイを有する機器に対して信号を出力する ための信号出力手段47は、コントローラ部Dに配設される。これにより、現像 剤残量レベル及び異常が発生した旨を画像形成装置と通信可能なディスプレイを 有する機器であるパーソナルコンピュータやワークステーション等のホスト41

出証特2000-3077179

に表示することが容易となる。

[0053]

上述のように、現像剤収納容器4内の現像剤残量は、平面アンテナからの出力 を統計的処理することで確定される。この処理はエンジン部42のE-コントロ ーラ42に配設された信号処理手段44において実行される。

[0054]

画像形成装置本体100の電源スイッチを入れた直後や、カートリッジ交換直 後、ジャム処理直後から、平面アンテナ20へ交流バイアスが印加され、現像剤 残量検知手段20により現像剤残量レベル検知が行われる。

[0055]

前述したように、画像形成装置本体100の電源スイッチを入れた直後や、カ ートリッジ交換直後、ジャム処理直後においては、平面アンテナ20ヘバイアス を印加し、更には攪拌手段10及び表面清掃手段10aの回転などを行い、表面 清掃手段10aの回転周期に応じたアンテナ出力の統計処理を実行して現像剤残 量レベルを確定させるための十分な時間が無く、現像剤残量レベルを表示するこ とができない。従って、このような時間帯では、使用者は現像剤残量レベルを知 ることができない。

[0056]

そこで、前回の現像剤残量検知により確定され、プロセスカートリッジBに配 設された記憶手段31に記憶保存された現像剤残量レベルを、エンジン部Cに配 設された書き込み、読み出し手段32が読み出し、ビデオインターフェース(I /F)43を介してコントローラ部Dに配設された信号出力手段47と通信し、 装置本体100のディスプレイ33及び/又はパーソナルコンピュータやワーク ステーション等のホスト41のディスプレイ41aに表示する。

[0057]

これにより、画像形成装置本体100の電源スイッチを入れた直後や、カート リッジ交換直後、ジャム処理直後などの、現像剤残量レベルを確定するまでに十 分な時間が経過していない期間であっても、直ちに使用者に現像剤残量を知らせ ることができる。このとき、カートリッジ及び画像形成装置の異常検知が行われ

出証特2000-3077179

る。

[0058]

続いて、カートリッジ及び画像形成装置の異常検知方法について説明する。現 像剤残量レベルを検知できる平面アンテナ20のような現像剤残量検知手段20 は故障する可能性がある。故障の原因としては、接点不良、バイアス印加不良等 の電気的なものや、平面アンテナ20の破損等の機械的なものが考えられるが、 いずれの場合においても画像形成装置及びカートリッジの双方に甚大な影響を及 ぼす可能性が高い。よって、遅くとも画像形成を行うより前に、異常検知が実行 されなければならない。

[0059]

前述したように、ある程度の画像形成を行うなど、攪拌手段10の回転を行い 、攪拌手段10の回転周期に応じたアンテナ出力の統計処理を実行しなければな らず、この時点において現像剤残量レベルを正確に確定することはできない。従 って、通常の統計的処理によって確定された現像剤残量に基づいて上述のような 異常を検知するためには、斯かる処理が終了するまで待たなければならず、遅く とも画像形成開始以前に迅速に異常を検知するということができない。

[0060]

一方、通常の統計的処理とは異なる精度の粗い統計的処理ならば、短時間でお およその現像剤残量レベルは検知可能である。そこで、本実施例では、先ず、通 常の統計的処理とは異なるこの精度の粗い(簡略な)統計的処理により求められ るおおよその現像剤残量を用いて、迅速にカートリッジ及び画像形成装置の異常 を検知する構成とする。

[0061]

この簡略な統計処理は、エンジン部Cに配設された信号処理手段44によりな される。予め対応付けられた、平面アンテナ20を用いて検知される静電容量と 現像剤量の関係から、現像剤収容容器4内のおおよその現像剤残量レベルとして 確定される。

[0062]

つまり、上述のように、現像剤収納容器4内の現像剤量は、通常、攪拌手段1

0の回転を例えば10回転行う間に検出される平面アンテナ20の出力の平均値 をとる、といった統計的処理をして確定している。これに対して、上述の簡略な 統計的処理としては、

(1) 攪拌手段10の回転を行わないで、平面アンテナ20にバイアスを印加す ることが考えられる。この場合、平面アンテナ20に現像剤が付着して残ってい る可能性が高いが、大まかな検知においては問題ない。他には、

(2)攪拌手段10の回転が1回転行われる間に検出されるアンテナ出力の平均 値をとることもできる。検知精度は低下するが大まかな検知においては問題ない

[0063]

確定されたおおよその現像剤残量レベルは、信号処理手段32から、ビデオインターフェース(I/F)43を介してコントローラ部Dに配設された比較手段46に送信される。

[0064]

同時に、前回の現像剤残量検知により確定され、プロセスカートリッジBに配 設された記憶手段31に記憶保存された現像剤残量レベルを、エンジン部Cに配 設された書き込み、読み出し手段32が読み出し、ビデオインターフェース(I /F)43を介してコントローラ部Dに配設された比較手段46に送信する。

[0065]

比較手段46において、おおよその現像剤残量レベルと、前回の画像形成時等 において確定されプロセスカートリッジの記憶手段31に記憶された現像剤残量 レベルとの間に所定の閾値Xを超えた大きな差異が認められた時は、現像剤残量 検知手段20の破損、表面清掃手段10aの破損、電気的な短絡、画像形成装置 本体100の故障等の発生が考えられる。

[0066]

この場合、プロセスカートリッジB又は画像形成装置本体100の異常や故障 が発生したと判断し、コントローラ部Dに配設された比較手段46は、同じくコ ントローラ部Dに配設された信号出力手段47と通信し、異常が発生した旨を装 置本体100のディスプレイ33及び/又はパーソナルコンピュータやワークス

出証特2000-3077179

テーション等のホスト41のディスプレイ41aに表示し、使用者にその旨を報 知する。

[0067]

表示内容は、現像剤残量検知手段20の故障発生、装置本体100の故障発生 等、故障発生の可能性又は故障の原因を示すもの、或はプロセスカートリッジB や装置本体100の点検が必要であること等、メンテナンスの必要性を示唆する ものであってもよい。

[0068]

この時、コントローラ部Dに配設された比較手段46は、ビデオインターフェ ース(I/F)43を介してエンジン部Cに配設された書き込み、読み出し手段 32と通信し、プロセスカートリッジBに搭載している記憶手段31に異常が発 生した旨の情報を記憶させる。これにより、プロセスカートリッジBを装置本体 100に対して交換装着した場合にも、故障した可能性があるプロセスカートリ ッジであることが瞬時に判別でき、異常が発生したカートリッジの使用を避けら れるようにしている。

[0069]

又、比較手段46において、上記所定の閾値Xよりも両者の差が小さいと認め られた場合には、問題なきものと判断し、異常検知は終了する。

[0070]

上記の簡略な統計的処理によって得られた現像剤残量を用いた異常検知の後、 通常の統計的処理による現像剤残量の確定が行われる。即ち、画像形成動作中に 行われる現像剤残量検知においては、より正確な現像剤残量レベルを使用者に報 知し、更に、常時カートリッジ及び画像形成装置の異常検知を可能とするするた めに、現像剤残量検知手段20の出力信号に対して通常の統計的処理を行うこと で現像剤残量レベルを確定し、確定された現像剤残量レベルとプロセスカートリ ッジBの記憶手段31に記憶させた現像剤残量レベルとを、コントローラ部Dに 配設された比較手段46及びエンジン部Cに配設された比較手段45によって以 下に示すように2段階で比較する。

[0071]

先ず、1段階目では、コントローラ部Dに配設された比較手段46において両 者の差の絶対値の大きさが比較される。

[0072]

本実施例の現像剤残量検出装置30のように逐次残量を検知する装置では、 n 回目の検知により確定された現像剤残量レベルとn+1回目の検知により確定さ れた現像剤残量レベルの間であまりにも大きな差が出るはずがない。よって所定 の閾値Xを超えた大きな差異が認められる時は現像剤残量検知手段20の破損、 表面清掃手段10aの破損、電気的な短絡、画像形成装置本体の故障等に起因す ることが考えられる。

[0073]

この場合も、前述したのと同様に、プロセスカートリッジB又は画像形成装置 本体100の異常や故障が発生したと判断し、コントローラ部Dに配設された比 較手段46は、同じくコントローラ部Dに配設された信号出力手段47と通信し 、異常が発生した旨を装置本体100のディスプレイ33及び/又はパーソナル コンピュータやワークステーション等のホスト41のディスプレイ41aに表示 し、使用者にその旨を報知し、且つ、プロセスカートリッジBに搭載している記 憶手段31に、異常が発生した旨の情報を記憶させる。

[0074]

次に、2段階目では、エンジン部Cに配設された比較手段45において、確定 された現像剤残量レベルとプロセスカートリッジBの記憶手段31に記憶された 現像剤残量レベルの大小関係を比較する。

[0075]

原理的に、現在確定された現像剤残量レベルが、前回の画像形成時等において 確定されプロセスカートリッジBの記憶手段31に記憶された現像剤残量レベル よりも大きい値であることはあり得ない。よって、確定された現像剤残量レベル がプロセスカートリッジBの記憶手段31に記憶させた現像剤残量レベルよりも 大きい場合は測定誤差とみなすことができる。

[0076]

このような場合、使用者に現像剤残量レベルが増加したような誤情報を与えな

いためにも、装置本体100のディスプレイ33及び/又はパーソナルコンピュ ータやワークステーション等のホスト41のディスプレイ41aには、前回の現 像剤残量検知において確定された現像剤残量レベルを表示する。

[0077]

つまり、コントローラ部Dに配設された信号出力手段47に対して、前回の現 像剤残量検知において確定された現像剤残量レベルを現在確定された現像剤残量 レベルで更新する入力を行わない。よって、エンジン部Cに配設された書き込み 、読み出し手段32に対しても、現像剤残量レベルの書き込み要求はしない。

[0078]

現在確定された現像剤残量レベルがプロセスカートリッジの記憶手段31に記 憶させた現像剤残量レベルよりも小さい場合には、エンジン部Cに配設された比 較手段45は、ビデオインターフェース(I/F)43を介してコントローラ部 Dに配設された信号出力手段47と通信し、現在確定された現像剤残量レベルを 新たな現像剤残量レベルとして、装置本体100のディスプレイ及び/又はパー ソナルコンピュータやワークステーション等のホスト41のディスプレイ41a に表示し、使用者に報知する。

[0079]

同時に、エンジン部Cに配設された書き込み、読み出し手段32に対しては、 現在確定された現像剤残量レベルを新たな現像剤残量レベルとして記憶手段31 に書き込むように要求する。

[0080]

プロセスカートリッジBに記憶手段31を配設することで、現像剤残量を各々 のカートリッジに保存することができる。よって、カートリッジBを交換使用し た場合にも、交換したカートリッジが有する記憶手段31から現像剤残量レベル 情報を呼び出すことで、ユーザーは各カートリッジに即した現像剤残量レベルを 直ちに知ることができる。又、同時にそのカートリッジ及び画像形成装置の異常 検知が可能となる。

[0081]

尚、カートリッジBが新品である場合は、記憶手段31には予め工場出荷段階

で収納されている現像剤残量が記憶されているので、現像剤残量レベルが確定す るまではこのレベルを読み出し、表示する。

[0082]

このように、本実施例によれば、エンジン部Cからコントローラ部Dに対して は、現像剤残量検知手段20が検知して現在確定された現像剤残量レベルと、記 憶手段31に記憶された前回の現像剤残量検知において確定された現像剤残量レ ベルとの2系統の現像剤残量レベルに関する出力がなされる。

[0083]

次に、図5に示すフローチャートを参照して本実施例による現像剤残量検知方 法並びにカートリッジ及び画像形成装置の異常検知方法について説明する。図5 は上記で説明した処理をフローチャートとして示す。

[0084]

本実施例では、画像形成装置本体100が稼動している間は、常時現像剤残量 レベルを装置本体100のディスプレイ33及び/又はホスト41としてのパー ソナルコンピュータのディスプレイ41aに表示しているものとする。

[0085]

本体電源スイッチを入れた直後、カートリッジ交換直後、ジャム処理直後など の現像剤残量検知手段20による現像剤残量レベルが未確定の場合(ステップ1 01)、エンジン部Cに配設されたデータ書き込み、読み出し手段32は、前回 の現像剤残量検知で確定した現像剤残量レベルTA0をプロセスカートリッジB に搭載している記憶手段31から読み出し(ステップ102)、ビデオインター フェース(I/F)43を介してコントローラ部Dに配設された信号出力手段4 7に送信する。

[0086]

これを受けて、信号出力手段47は画像形成装置本体に設けられた表示部33 或はパーソナルコンピュータ41に対してTAOをその時の現像剤残量レベルと して表示するよう信号を出力する(ステップ103)。

[0087]

尚、カートリッジBが新品である場合も記憶手段31には予め工場出荷段階で

収納されている現像剤残量が記憶されているので、現像剤残量レベルが確定する まではこのレベルを読み出し、表示する。

[0088]

同時に、現像剤残量検知手段20による簡略な現像剤残量検知が実行される(ステップ104)。現像剤残量検知手段20からの出力信号は、エンジン部Cに 配設された信号処理手段33において、通常の統計的処理とは異なる簡略な統計 的処理が行われ、短時間でおおよその現像剤残量レベルTA1が確定される(ス テップ105)。

[0089]

確定されたおおよその現像剤残量レベルTA1は、信号処理手段44からビデ オインターフェース(I/F)43を介してコントローラ部Dに配設された比較 手段46に送信される。

[0090]

更に、エンジン部Cに配設されたデータ書き込み、読み出し手段32により、 前回の残量検知で確定した現像剤残量レベルTAOが、プロセスカートリッジB に搭載している記憶手段31から読み出され(ステップ106)、ビデオインタ ーフェース(I/F)43を介してコントローラ部Dに配設された比較手段46 に送信される。

[0091]

尚、カートリッジBが新品である場合も記憶手段31には予め工場出荷段階で 収納されている現像剤残量が記憶されているので、このレベルを読み出す。

[0092]

コントローラ部Dに配設された比較手段46において、おおよその現像剤残量 レベルTA1と記憶手段31から読み出された現像剤残量レベルTA0とが比較 される(ステップ107)。

[0093]

前述したように、この両値の差が所定のXよりも大きい場合、何らかの異常が 発生したと判断し、比較手段46は、同じくコントローラ部Dに配設された信号 出力手段47と通信し、装置本体100のディスプレイ33及び/又はホスト4

1のディスプレイ41aに異常が発生した旨を示す信号を発信する(ステップ1 08)。

[0094]

同時に、比較手段46は、エンジン部Cに配設されたデータ書き込み、読み出 し手段32と通信し異常が発生した旨の情報を記憶手段31に記憶させる(ステ ップ109)。

[0095]

ステップ107にて両値の差が所定のXよりも小さい場合は、異常なきものと 判断する。

[0096]

ステップ104~ステップ107による異常検知が終了して、現像剤残量検知 手段20による検知が実行される(ステップ110)。

[0097]

又、プロセスカートリッジBが装置本体100に装着されており、且つ装置本 体100の電源スイッチが入ったまましばらくの間プリントを行っていない状態 からプリントを開始する場合(ステップ111)、現像剤の攪拌(アンテナの清 掃)が始まって現像剤残量レベルが確定するまでにやはり時間を要するが、ディ スプレイには既に前回の現像剤残量レベルが表示されているので、ステップ10 1~103の工程は行わない。しかし、遅くとも画像形成動作以前にカートリッ ジ及び画像形成装置の異常を検知ように、ステップ104~ステップ107の異 常検知は実行される。

[0098]

その後、ある程度の画像形成を行うなど、現像剤残量検知手段20による現像 剤検知が実行され(ステップ110)、エンジン部Cに配設された信号処理手段 44により現在の現像剤残量レベルがTA2と確定される(ステップ112)。

[0099]

信号処理手段44は、確定された現像剤残量レベル値TA2を、エンジン部C に配設された比較手段45、及びビデオインターフェース(I/F)43を介し てコントローラ部Dに配設された比較手段46に出力する。同時に、プロセスカ

出証特2000-3077179

ートリッジBに搭載している記憶手段31が記憶している現像剤残量レベルTA 0がデータ書き込み、読み出し手段32により読みだされ(ステップ113)、 エンジン部Cの比較手段45及びビデオインターフェース(I/F)43を介し てコントローラ部Dの比較手段46に出力される。

[0100]

TA2とTA0は比較手段45及び比較手段46において以下の処理がなされる。

[0101]

先ず、コントローラ部Dに配設された比較手段46では、異常検知が行われる (ステップ114)。前述したように、現像剤残量検知手段20により検知され 確定された現像剤残量レベルは、随時プロセスカートリッジBに搭載された記憶 手段31に記憶される。よって、何らかの異常が無い限り、このTA2とTA0 は非常に近い値のはずである。従って、この両値の差が所定のXよりも大きい場 合には、何らかの異常が発生したと判断した比較手段46からの出力を受けて、 コントローラ部Dに配設された信号出力手段47は異常が発生した旨を報知する 信号を画像形成装置本体100に設けられた表示部33及び/又はホスト41に 対して出力する(ステップ108)。

[0102]

又、比較手段46からの出力をビデオインターフェース(I/F)43を介し てエンジン部Cに配設されたデータ書き込み、読み出し手段32が受け、プロセ スカートリッジBの記憶手段31に前回の現像剤残量検知にて確定された現像剤 残量レベルTA0の代わりに、現在確定された現像剤残量レベルTA2を上書き すること禁じ、且つ、異常が発生した旨の情報を記憶手段31に記憶させる(ス テップ109)。

[0103]

一方、エンジン部Cに配設された比較手段45では、より正確な現像剤残量検 知を可能とする処理が行われる。即ち、TA2とTA0のどちらが大きいかを比 較し(ステップ115)、新しく確定した現像剤残量レベルTA2の方が大きい 場合、比較手段45からの信号を受けて現像剤残量レベルに関して何ら更新要求

を出さない。よって、コントローラ部Dに配設された信号出力手段47が表示部 33及び/又はホスト41に対し送信する現像剤残量は、前回に確定された現像 剤残量レベルTA0のままである(ステップ116)。

[0104]

又、現像剤残量検知手段20にり現在確定された現像剤残量レベルTA2の方 がTA0より小さい場合、比較手段45からの信号を受けて現像剤残量レベルT A2がビデオインターフェース(I/F)43を介してコントローラ部Dに配設 された信号出力手段47に送信される(ステップ117)。

[0105]

更に、比較手段45からの信号をデータ書き込み、読み出し手段32が受けて 、記憶手段31のTA0をそのTA2の値に書き換え、新たなTA0として記憶 する(ステップ118)。

[0106]

以上の工程を繰り返すことにより、現像剤残量表示が更新され、同時にカート リッジ及び画像形成装置の異常検知が実行される。

[0107]

尚、本実施例においては、現像剤残量レベルの比較機能の一部をコントローラ 部に持たせる構成としたが、その全機能をコントローラ部が備える構成も可能で ある。その場合においても、コントローラ部Dとエンジン部Cの通信手段である ビデオインターフェース(I/F)43上で、現像剤残量検知手段により確定さ れた現在の現像剤残量レベル値と、前回の残量検知で確定され記憶手段31に記 憶された現像剤残量レベル値の2系統の現像剤残量レベルに関する出力を有する こととなる。

[0108]

又、本実施例は、現像剤残量検知手段20として平面アンテナ方式を用いたが 、本発明は、この方式の現像剤残量検知手段に限定するものではない。現像剤収 納容器4内の攪拌トルク検知方式など現像剤残量レベルを逐次検知できれば、そ の方式は問わない。

[0109]

更に、画像形成装置本体100に配設されている信号処理手段32を、記憶手 段31とともに、プロセスカートリッジBに搭載してもよい。両者に関わる演算 処理装置をプロセスカートリッジBに搭載することにより、画像形成装置本体1 00とプロセスカートリッジBとの間で行われていたデータの書き込み、読み出 し等の通信を簡略化することができる。その結果、接点不良及びノイズ等による 通信エラーの発生機会を減少させることができ、安定した現像剤残量レベル検知 を行うことができる。

[0110]

実施例2

図6には、本発明の他の態様であるカートリッジ化された現像装置Eの一実施 例を示す。

[0111]

本実施例の現像装置Eは、現像ローラ5a及び現像ブレード5cなどの現像手 段5を保持する現像室5Aと、現像剤手段5に現像剤を供給する現像剤を収容す る現像剤収納容器4とをプラスチック製の現像剤枠体11及び現像枠体12によ り一体的に構成することによりカートリッジ化される。即ち、本実施例の現像装 置Cは、実施例1で説明したプロセスカートリッジBの現像装置構成部をユニッ ト化したものであり、即ち、プロセスカートリッジBから、感光体ドラム1、帯 電手段2、クリーニング手段7を除いて一体化したカートリッジと考えることが できる。従って、実施例1にて説明した全ての現像装置構成部及び現像剤量検出 手段構成が同様に本実施例の現像装置においても適用される。従って、これら構 成及び作用についての説明は、実施例1において行った上記説明を援用する。

[0112]

本実施例においても、実施例1と同様の作用効果を達成し得る。

[0113]

【発明の効果】

以上説明したように、本発明によれば、現像剤収納容器と、現像剤収納容器内 の現像剤残量を逐次検知できる現像剤残量検知手段と、確定された現像剤残量を 記憶する記憶手段と、を有するカートリッジが着脱自在であり、現像剤残量検知

出証特2000-3077179

手段の検知出力を統計的手法により処理して現像剤残量として確定する処理手段 と、統計的手法により確定した現像剤残量と記憶手段に記憶されている現像剤残 量とを比較する比較手段と、を備えた画像形成装置における画像形成装置及び/ 又はカートリッジの異常検知システムは、

(A)比較手段の比較結果が所定量より大きい場合は画像形成装置及び/又はカ ートリッジの異常と判断し、装置が備える情報表示部及び/又は装置と通信可能 なディスプレイを有する機器に異常を判断した旨を出力する構成とされるか、

(B)処理手段が現像剤残量を確定するまでの期間には、現像剤残量検知手段の 検知出力を統計的手法とは異なる簡略な統計的手法により処理して現像剤残量を 概算し、概算した現像剤残量と記憶手段に記憶されている現像剤残量とを比較し 、処理手段が現像剤残量を確定してからは、確定された現像剤残量と記憶手段に 記憶されている現像剤残量とを比較し、比較手段の比較結果が所定量より大きい 場合は画像形成装置及び/又はカートリッジの異常と判断し、装置が備える情報 表示部及び/又は装置と通信可能なディスプレイを有する機器に異常を判断した 旨を出力する構成とされ、又、本発明によれば、現像剤残量表示システムは、

(C)比較手段の比較結果が所定量よりも小さく、且つ、統計的手法により確定 した現像剤残量が記憶手段に記憶されている現像剤残量よりも小さい場合は現像 剤残量を更新し、装置が備える情報表示部及び/又は装置と通信可能なディスプ レイを有する機器に現像剤残量を表示し、記憶手段に記憶された現像剤残量を更 新する構成とされるか、

(D)処理手段が現像剤残量を確定するまでの期間には、記憶手段に記憶された 現像剤残量を表示し、処理手段が現像剤残量を確定してからは、比較手段の比較 結果が所定量よりも小さく、且つ、統計的手法により確定した現像剤残量が記憶 手段に記憶されている現像剤残量よりも小さい場合は現像剤残量を更新し、装置 が備える情報表示部及び/又は装置と通信可能なディスプレイを有する機器に現 像剤残量を表示し、記憶手段に記憶された現像剤残量を更新する構成とされるの で、

(1)カートリッジ及び画像形成装置の異常検知を可能とし、異常が発生したカ ートリッジ及び画像形成装置が使用されることで更に甚大な破損に到ることを未

然に防ぐことができる。

(2)現像剤収納容器内の現像剤残量レベルを、いつでも、時間をかけずに、正 確に使用者に知らせることができる。

といった効果を奏し得る。

【図面の簡単な説明】

【図1】

本発明に係るプロセスカートリッジと画像形成装置の一実施例の断面図である

0

図1のプロセスカートリッジの拡大断面図である。

【図3】

本発明に係るプロセスカートリッジに搭載することのできる現像剤残量検知手 段の図である。

【図4】

本発明に係るプロセスカートリッジと画像形成装置の概略関係図である。

【図5】

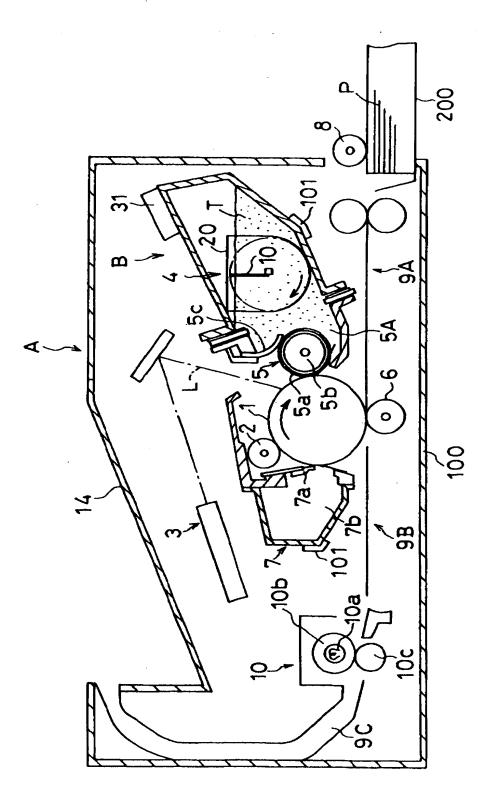
本発明に従った現像剤量に関する情報の表示動作を説明するフローチャートである。

【図6】

本発明に係るカートリッジ化された現像装置の一実施例の断面図である。

【符号の説明】

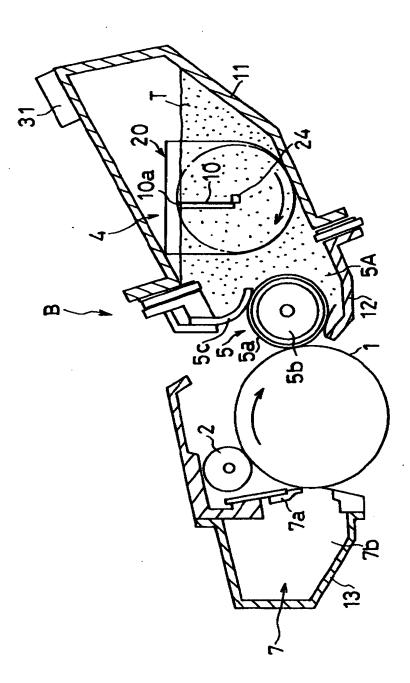
1	感光体ドラム
2	带電手段
3	レーザースキャナー
4	現像剤収納容器
5	現像手段
7	クリーニング手段
10	攪拌手段
_	


10a 表面清掃手段

[【]図2】

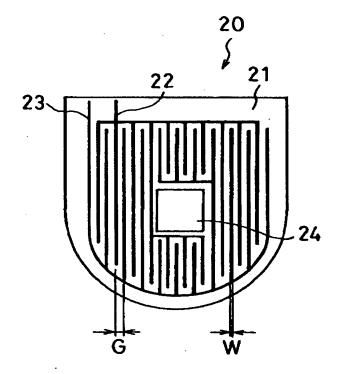
- 20 現像剤残量検知手段(平面アンテナ)
- 31 記憶手段
- 30 現像剤量検出装置
- 32 データ書き込み、読み出し手段
- 33 表示部
- 41 ホスト
- 42 E-コントローラ
- 43 ビデオインターフェース
- 4.4 信号処理手段
- 45 比較手段
- 46 比較手段
- 47 信号出力手段
- 100 画像形成装置本体
- 101 装着手段
- A レーザービームプリンタ
- B プロセスカートリッジ
- C エンジン部
- D コントローラ部
- E 現像カートリッジ(現像装置)

【書類名】 図面


【図1】

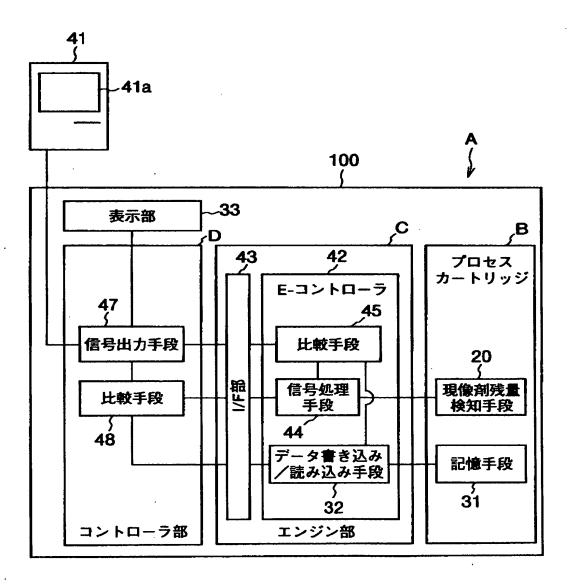
出証特2000-3077179

【図2】


(**a** (**a**

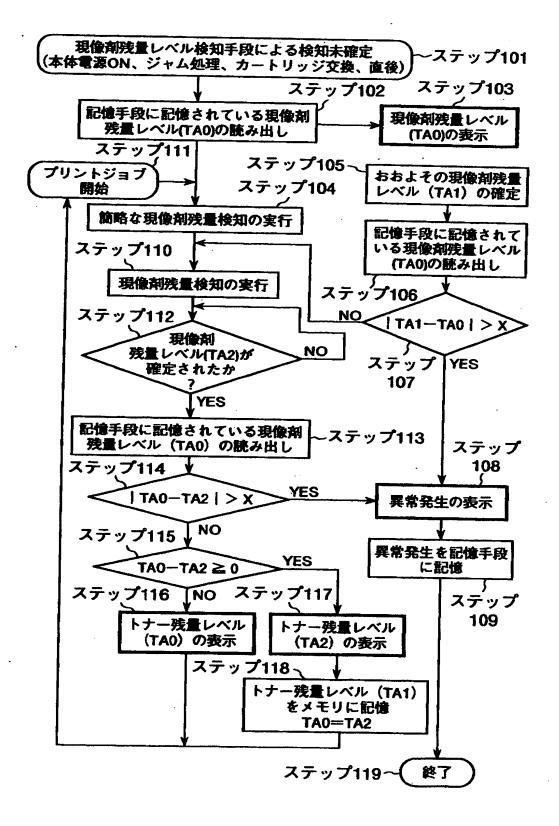
【図3】

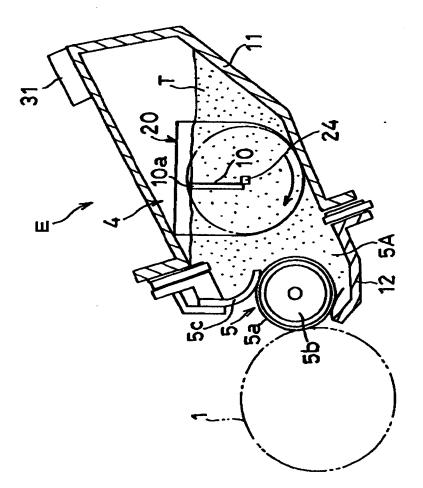
c) e1


....

【図4】

81 gy


....


出証特2000-3077179

【図5】

41 mil

【図6】

【書類名】 要約書

【要約】

【課題】 カートリッジ及び画像形成装置の異常検知を可能とし、異常が発生し たカートリッジ及び画像形成装置が使用されることで更に甚大な破損に到ること を未然に防ぐことのできる異常検知システム、又、現像剤収納容器内の現像剤残 量レベルを、いつでも、時間をかけずに、正確に使用者に知らせることのできる 現像剤残量表示システムを提供する。

【解決手段】 異常検知システムは、統計的手法により確定した現像剤残量と記 憶手段に記憶されている現像剤残量とを比較する比較手段46の比較結果が所定 量より大きい場合は画像形成装置及び/又はカートリッジの異常と判断し、装置 が備える情報表示部33及び/又は装置と通信可能なディスプレイを有する機器 41に異常を判断した旨を出力する構成とされる。

【選択図】 図5

出願人履歷情報

識別番号

•• 1)

[00001007]

1.変更年月日	1990年 8月30日
[変更理由]	新規登録
住 所	東京都大田区下丸子3丁目30番2号
氏名	キヤノン株式会社